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Abstract—This paper deals with the elastostatic load transfer of a tensile load in a model of an
adhesive lap joint (tension-shear problem). The adhesive layer is regarded as infinitesimally
thin and the displacement and traction vectors in the adherends are assumed to be continuous
across the bond. The problem is reduced to a pair of Fredholm integral equations of the
second kind which involve the mean angle between the deformed bond line and the tensile load.
This angle, in turn, is determined by means of a scheme due to Goland and Reissner. Numerical
results for the bond line stresses and the stress intensity factors at the ends of the bonded
region are presented.

INTRODUCTION

In this paper the adherends are modeled by two parallel, infinite strips of equal constant
thickness, bonded along a common finite line. The bond is assumed to be infinitesimally
thin and the bond-line tractions and displacements are taken to be continuous from one
adherend to the other. The two-dimensional stress and displacement fields are determined
within the scope of the linear elasticity theory of plane strain in this model of an adhesive
lap joint, which is subjected to tension-shear type loading.

Section | contains auxiliary solutions for a slab under a concentrated normal and tan-
gential edge load, respectively. Section 2 is devoted to the formulation of the “ inner prob-
lem”. By “inner problem”, we mean the determination of stresses in the lap joint when
the magnitude and direction of the force transmitted through the bond is given. With the
aid of the two auxiliary solutions in Section 1, the problem is reduced to a coupled pair of
Cauchy-type singular integral equations subject to two normalizing conditions. Fortunately,
this pair of singular integral equations may be uncoupled by means of the normalizing
conditions and the symmetry properties of the bond stresses. Section 4 is concerned with
the determination of the angle of rotation of the bond line relative to the applied load.
The analysis is based on a paper by Goland and Reissner[1]. Finally, illustrative numerical
results are presented in Section 5. In particular the dependence of the stress intensity factors
upon the loading parameter and joint geometry is shown.

1. Auxiliary results

As a prerequisite for the formulation, we record here certain results for an elastic slab
in a state of plane strain. Consider an elastic slab of Young’s modulus E, and Poisson’s
ratio v, the median section of which occupies the region

D = {(x;, x5)| —o0 < x; < o0, —b<x,<b}. ¢}
t Present address: The Aerospace Corporation, El Segundo, CA 90245, U.S.A.
503



504 Dick J. CuanG and R. Muk1

Now suppose that the slab is subjected to a normal (tangential) edge load of unit magni-

tude per unit length in x;-direction situated at (0, - b) and applied in the positive x,-direc-
o) [62]
tion (in the positive x,;-direction). Further, denote by u,, &,5 and 7, (2, B, y = 1, 2) the car-

tesian components of displacement, strain and stress in the slab under such a loading
(superscript (1) for normal, and superscript (2) for tangential loading) subject to the regu-
larity requirements

¢ ) 3

Top(%y, X2} = o(| % |*) as x; - —o0,

(2)

(¢2}
raﬁ(xla x2) == 0('e-ex1) as 'xl - 0,

for some positive 1 and &.
Then, after routine manipulation based on Airy’s stress function and the exponential
Fourier transform, one arrives at

1 3xyx
1X2
Txy, X2) = —453"‘

b fmfl(—bsS_(bs) + C_(bs) — x, 58 (bs))sinh(x, 5)
T Yo

3
+ (bs C(bs) — S.,(bs) + x, sC_(bs))cosh(x, 5)]cos(x,s) — 55%3 X

(;lz(xu X,) = 11—z f:[(bs S_(bs) + C_(bs) + x,55,(bs))sinh(x, s)

— (b5 C(bs) + S.(bs) + x, sS_(bs))cosh(x;, s) Jeos(x;5) ds,
2 »00
(;12(x,, X,) = 3 (1 - x_z) + :—r J [(bs C_(bs) + x, 5C..(bs))sinh(x, s)
0

8b b?
~ (bs S4(bs) + x, sS_(bs))cosh(x, 5)Jsin(x;s) ds, (3)

4b b
+ (=%, 5C 4 (bs) + 28_(bs) — bsC_(bs))sinh(x, s) Jsin(x;5) ds,

(6 X2) = (1 - 3_"3) + i- [ (2 5S_(bs) — 2C..(bs) + bsS , (bs))cosh(x, s)
0

2) 0
<nz(x1, x,) = 1; fo [(bsC_(bs) + x, sC . (bs))sinh(x, 5)

— (b3S 4(bs) + x5S _(bs))cosh(x, s)]sin(xs) ds,

(2 2%y, X3) = % f: [(C(bs) — bsS . (bs) — x,55_(bs))sinh(x, s)

— (S_(bs) — bsS_(bs) — x, sC(bs))cosh(x, 5)]cos(xys) ds,

where
cosh s sinh s
= ey § = —————
C+(s) sinh(2s) + 2s +s) sinh(2s) + 2s @
h sinh s
C(s) cosh s . S.(S)= i

= sinh(2s) - 2s sinh(2s) — 25
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Further, we present here the displacements along the lower edge, needed later, which were
obtained from (3) and the stress—displacement relations.

(1)

du, w2
%, (X1, —=B) = — ———m——0(xy)
[ —v? 3
nEv {_ :TJ? f [fl(bs)cos(xls) + 2] ds},

o (- 1 3nxd

u2 - iy

o, 0 = T{— % 1668 10b f [f 2bs)sin(is) = 2] 2] ds} )

(3(2) 1 2 2

¥ ey 2 (7 - ,
%, (x, —b) = <E {b xl + ZJ-O [5(bs)sin(x,5) ds}

u, (1 +v1 -=2) 1 3 3

Ou, +v)(1 —2v - y? X,
5}—1( 1 —b) = — 8(xy) + — :4b2 2f [fl(bs)cos(xls) + b2s2] ds}.

where 6(x) stands for the delta function and

) 1
Sils) =s [sinh(Zs) +25  sinh(2s) — 25] ’
2s+1—e®  2sflde™
S = = S ne) + 23] T 2sinh(@s) — 251" N

2s—1—e™ % 25— 14+e7%
2[sinh(2s) + 2s]  2[sinh(2s) — 2s]

f3(9) =

The above expressions (5) were obtained, as in [2], by decomposing each integral repre-
sentation into a part uniformly convergent in D and one which is analytically integrable,
and then taking the limit as x, tends to —b.

2. Formulation of the problem

We turn now to the formulation of the tension-shear problem. The configuration of the
joint before the application of the load is shown in Fig. 1. Note that a new rectangular
cartesian coodinate system X; has been introduced with the origin at the center of the
bond line.

Assume now that a uniform tensile stress ¢,, = P/2b is applied to the upper and lower
plate at X; = — o0 and X; = 4+ 00. Under this loading the joint deforms as shown in
Fig. 2 and the plane tangent to the bond plane at the origin rotates about the X, axis.
This angle of rotation will be determined in the next section by use of the Goland—Reissner
analysis. In the remainder of this section, we assume that the angle of rotation is known
and designate it by 0.

Our next task is to reduce the problem to a pair of integral equations. Referring to the
coordinate system in Fig. 1, we denote the displacements and stresses in the plate by
uy,u; and 15, 1., where + (—) denotes the upper (lower) plate.
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Bonded region

Fig. 1. Geometry of adhesive joint.

Then, the boundary conditions and the bond conditions become

T;G(Xla 2b) = 09 r;a(:X_h _2b) = 0 ~X_l € (_w’ w)s
T;a(X—ls 0) = Oa T;a(Xl, 0) = 0 \X_l\ € (a’ CD), (7)
u:(Xl, O) = uu_(X—l, O)’ T;a(Xh O) = t;az()—(la 0) X—l € (—aa (1),

while the regularity requirements are

(X1, Xp) =0(1) as X, - oo,

- . 8
T.4X1, X3) =o(1) as X, — —o0. ®)
In addition the normalization condition can be stated as
[ X, 0 dX, = 35X, 0)dX, = Psin,
. —a
)

[ eh(X,, 004X, = | (X1, 0)dX, = —Pcosd.
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Fig. 2. Deformed configuration of the joint.
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Since the upper and lower plates have the same geometry and elastic properties, the ten-
sion shear loading will produce (See Figs. 1 and 2) a displacement field such that

u;(Xl’XZ)= _uu_(—Xb _XZ) XIE(—(D, CX)), XZG(Oa 2b) (10)
In particular, (10) together with the fifth of (7) gives
u (X, 0 = ~uf(-X,;,0) X,e(-a,a. 11

Now consider an elastic field in the upper plate, say i, , 75, which satisfies all the bound-
ary, regularity and normalization conditions: the first four of (7), (8) and (9). Further,
assume i, , 75 satisfy the condition (11) instead of the last two of (7). Now extend the
elastic field in the upper plate into the lower plate as follows:

ﬁu—()?la Xz) = “ﬁ:("‘XU —1\72),

- o - - - - 12
fa_B(X15X2)=f:ﬁ(~Xla _XZ) Xle(—ws w),XZE(_2b90)' ( )

It can be verified that the fields i,, %,, satisfy all the required conditions. Accordingly in
the following it is only necessary to deal with the upper plate.

We therefore restrict our discussion to the upper plate and remove the superscript * + .
On the basis of the preceding argument u, and 7,4, referring to the coordinate system in
Fig. 3, must meet the conditions:

TZa(xl, b) =0 X, € (_ 0, w)’

Toa(X1, —=0) =0 |x;| € (a, ), (13)
ua(xla _b) = - a(_xh _b) xl € (_a’ a)'
Top(x1, )2 0(1) as x; - —oo,
T30, X) = 0(1) as x, - o, ()
f T2,(x;, 2b) dx, = P sin 0,
B (15)

f 7,5(%;, —b)dx, = —Pcos d.

AR

1y

N (x)

Fig. 3. Upper plate-loading and coordinate system.
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At this point we introduce new symbols N and Q through

N(xy) = 15,(xy, —b),
Q(x)) = —145(x;, —b) Xy €(—a,a).

Then, by means of integral superposition, the stresses 7,4 in the upper plate can be expressed
(1) (2)
in terms of the auxiliary stress fields 7,; and rzp established in Section 1 as follows:

a (1)
aﬁ(xh x2) _J. aﬁ(xl L xZ)N(t) dr +f ﬁ(xl Z xZ)Q(t) ds (xls xz) e D. (17)

(16)

Use of integral superposition as in (17), and differentiation of the third equation in (13)
with respect to x,, gives

) (2)

(1
- f (x, _BN@dr+ [ a U (%, — 1, —B)Q(2) dt

(1) (2)
0 o’
__f' A( X 1, BN dt + [ %(—xl—t, ~b)Q() dr,
e (18)
) 2)

-f" Q(x1 1, —B)N() dt+£ -g%(xl—t, —B)O(t) d
(1) (2)
=—f ———( X, — 1, —b)N(t)dt+f %(—xl—t, —-b)Q(t) dt x; €(—a, a).
---aa Xy —a axl

By use of (5), (15), (16) and in view of the fact that ¥ and Q are symmetric (even) with
respect to the origin, equations (18) may be reduced to

" 20 4y,
—al— Xy
(19)
f V) de = ¢,(xy) x,€(—a,a),
Cal = Xy
where
e = _ { f: £y(bs)sin[(x, — D)s] ds}Q(t) dr - b2 " x,Psind,
‘ 20
o o iy 3(x, — 1) 3n 29)
Vo) = [ { fo [fz(bs)sm[(xl S ] >N(t) di + o5 x,P cos §,

in which £, , f; are defined by (6). Observe that the integral equations (19) are not coupled,
in contrast to (18).

3. Reduction of the problem to a pair of Fredholm integral equations

Our next objective is to reduce each of the singular integral equations (19) to a standard
Fredholm integral equation by means of Muskhelishvili’s method ([3], p.235). In this
manner one finds from (19) that
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0lty) = ~ —~—~L—_—tg U_ VEE  are Al},

nz\/az ~ t—to

Nito) = = tz[f T wz(t)dz+A] the(-a,a),

t—1

21)

where A; and A, are undetermmed constants.

To determine the constants 4; and 4,, substitute from (16) into (15) and then for
Q and N from (21) into the resulting integral relations. After carrying out the integrations
involved, one has

A, = —nPcos B,

A, = —7Psin b. 22

An inspection of the integral equations (21) suggests the introduction of new dimension-
less variables through

é = tO/b9
0(8) = b/a? — &2 - Q(bE)/P, (23)
(&) = b/oa® — & - N(BE)/P.

o = ajb. 24)

where

Then, after a permissible interchange of the order of integration and in view of (22), we
arrive at the integral equations for § and N:

0@ +[ Kil& )0l dn =Py(0),

. ’ (25
RO+ | KGN =PyO  Eel-aal
where
Yz
Ko = 5 [ 2 LG
2
K= [ \/“ G-,
) (26)
PyE) = f_?} + = (oc — 2% sin B,
sin @ "
Pz(f)“T ——~(oc —2¢%) cos 8.
The functions G, and G, are defined by
6@ =[ fieysinés) ds,
@n

6@ = | ominces) + 25]as
where f3 and f, are given by (6).
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Fig. 4. Central section of the joint.

4. Determination of 0

The bonded portion of a lap joint experiences a rotation relative to the original configu-
ration if the joint is subjected to tension-shear loading. Here, we employ the Goland-
Reissner analysis ([1] or [4], p. 210) to determine this angle of rotation.

Choose the origin at the center of the bonded region and the x-axis in the direction of
applied force, as shown in Fig. 4. Then, the initial configuration of the center line is

/{x x€(0, a),

yx) = (28)

b
\zx—b x€e(a, L).
where b stands for the half thickness of the plate and L is the distance from the center of
the joint to the point of load application.

Within the framework of elementary plate theory, the moment M(x) and the governing
differential equations for the displacement v(x) of the center line in the y-direction are given

by

M(x) = Ply(x) + v(x)]  x€(0, L), (29)
2 2
- D+ =0 xe(0,0)
(30)
d*v  K? I
Freiale) [y(x) +v(x)]=0  xe(a, L),
where P is the magnitude of the applied force per unit width of the plate and
3(1 = v)P
= . 31
§ \/ 25E 3D
The boundary conditions to be adjoined to (30) are
v(0+) =0, (L —) =0,
v(a—) =v(a+), (32)

dv dv
P (a—)= a(a'*')-
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Now, the mean value of the angular change over the interval (0, a) seems to be the
most natural measure of the angle of rotation 6 of the joint employed in the preceding

sections. We define 0(x, L) by
b 1 7dv d b &a).

x=-+ (33)

O(K’L)=L+Z o dx L a

Solving for v from (30) and (32) and then substituting into (33), we have

e L) =" 2,2 . (34)

¢ 2+coth( aad )tanh(xL—a)
2/2b b

Finally, note from (34) that

Ak, L) = 6(x) + 0(exp(—2K~L;a)) as L— o, (35)

where

B = 2. 2,2 , (36)
a Ka

From now on we confine our discussion to the limiting case as L — co.

5. Numerical results, discussion

We turn now to the numerical evaluation of the bond stresses via the integral equations
(25). The kernels of these integral equations, K, and X, involve infinite integrals G,, and
G, defined by (27). To facilitate the numerical evaluation of G, we observe that

[ F(opines) ds = gu(e,m) + 0m%) a5 m-+0,

) (37)
f £,(s)sin(&s) ds = O(Z%e™*M) as M — oo,
M
where
L 4158y 8,
g1(&, m) = Em 5 +4—5m +ﬁm. (38)
Therefore, the values of G; may be evaluated to any desired degree of accuracy from
M
GO =gi&m) + [ fy(s)sin(s) ds (39)

by choosing suitable numbers for m and M and evaluating the integral by Filson’s formula
([5], p. 890). The analogous approximate formula for G, is found to be

M
Go&) = g2& m) + [ fuls)sin(Es) ds, (40)
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where
338 (64 53 £ £
g:(em) = =+ (5 - ?)m "2 (525 - 480) g @b

As for the evaluation of the integrals appearing in the definitions of X, and X,, we
remove the contributions from the Cauchy-type singularities by use of the elementary integral

fo Vi(f ; 9 g5 Ta-20)  cel0,q] (42)
and evaluate the remaining regular integrals numerically.

To solve the integral equations (25), we introduce a uniform partition of the interval
[0, «] and approximate the unknown functions by continuous functions that are linear in
each subinterval. Subsequently, we evaluate the contributions over the first and the last
interval, taking the square root singularities of the kernel into account, and employ the
trapezoidal rule for the remainder. In this manner each of the integral equations (25) is
reduced to an approximating system of linear algebraic equations for the values of N or §
at the mesh points of the underlying partition.

We proceed now to the discussion of illustrative numerical examples. The stress distri-
bution in the present model of a lap joint under a tension-shear loading may be determined
if the mean angle of rotation § of the joint is given in addition to the parameter a/b which
characterizes the geometry of the joint. This mean angle of rotation, in turn, depends
exclusively upon the ratio a/b and the parameter x defined by (31) within the current ap-
proximation. Figure 5 shows the dependence of § on « for a/b = 4, 6, 8 and 10, on the basis
of (36). The dashed lines represent the maximum values of § for given a/b values.

We note at this point that the solutions of the pair of integral equations (25) are related
to the bond stresses through

1 -
N(x,/b) = \/a —x} - 132(x1, —b),
(43)
Q(x,/b) = ; . \/c}T:;c% “Ty,(%y, —b) x, €(—a,a)

as is apparent from (16), (23) and (24). The variations of N and Q are shown for a/b = 8

0207~

————— : Asymptote os k—= 0
015

a/b=6 a/b=4

005

Fig. 5. Dependence of the rotation angle of the joint on «.
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Fig. 6. Distribution of normalized normal bond stress.

on Figs. 6 and 7, respectively. For the mean angle of rotation, we employed here the values
1/5, 2/5, 3/5, 4/5 and 5/5 of the maximum possible angle of rotation under a tension-shear
loading. Because N and @ are both even functions of x,, only the variations of these quan-
tities over half of the interval are shown.
In view of (43), we define next the stress intensity factors A, and 4, by
Ay = lim N(x,/b) = N(2),
xX—a . . (44)
Ay =lim Q(x,/b) = Q().

12—
OA(XV,)-’-./fa_a?) Tiz (x,0 )
' P
+0 Pr2b =
253

o8 (E
!
g
2 |
04 l
i
K
0-2 ]
S
|
° 1 I I 1
~8-0 -60 -4.0 -2:0 o
X
[

Fig. 7. Distribution of normalized shear bond stress.
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a/b=4

N =lim Va®-x,21,, (X,0)/P
X, g
x=V3(1-4e/ 208

] 1 ! ! !
0 o1 02 03 04 05

02—

K
Fig. 8. Dependence of A, on «.

We should emphasize the dependence of A, and A, on the parameters x¥ and a. When x
and « are given, the angle of rotation of the joint can be determined from (36) and N and {
are then obtained by solving the integral equations (25). Figures 8 and 9, depicting
the dependence of 4, and 1, upon x for a = a/b =4, 6, 8 and 10, were prepared in this
manner.

It is normal in lap joint construction to initially have a finite overlap that is completely
bonded. This means that the joint as constructed contains no cracks and has a different
geometry from the model presented here. This is especially important since crack initiation
and growth at the ends of the bond line depend strongly upon the geometry of the adherends
in these regions. A consideration of the geometrical effects at these points was attempted
by Westmann[6].

On the other hand, a lap joint may experience slow crack growth due to cyclic thermal
or mechanical loadings. Such cracks can initiate at the ends of the bond line and grow
stably for some time. The resulting joint geometry is then quite similar to that of the prob-
lem considered here and the question as to the strength of the cracked joint may be answered
using the present model.

The stress analysis completed in this paper is based upon the assumption that a state of
plane strain exists. This two-dimensional approximation precludes the application of the
results in regions near the sides of the joints.

The results presented here permit us to conduct a strength analysis of a joint where the
cracks have extended from the initial ends of the bond line. The singular stress fields at the
tips of the crack are characterized by the usual two stress intensity factors K;, K, used in
fracture mechanics. These quantities are related to 4,, 4, in Figs. 8, 9 by

~ n
K“,=P'\/—-}q,2. (45)
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a/b=6
o0-a4|— a/b=4
2=~ lim Va?-x? 1, (x,0)/P,
Xl..a
o2

k= V3(-v2)P/ 26E

I | L | }
0 ol o2 03 o4 05

K

Fig. 9. Dependence of A, on «.

A knowledge of how unstable bond-line crack growth depends upon the combination of
K, K}, permits the completion of the strength analysis.

One way to accomplish this is to use the results of brittle fracture theory and the concept
of a strain energy release rate 4. As developed by Irwin[7], this theory states that a crack
will propagate when the change of strain energy of the system (for an infinitesimal increase
in crack length) is equal to a critical material value %, times the change in crack length.

If the crack propagates along the bond line, the direction of crack growth is known.
This permits the expression of the strain energy release rate in terms of K, K,[8], as
follows
Pm 1—v?

o b
4 (Kt +K3) = - TE [E A3+ lf)] (plane strain). (46)

E

{9:

The failure prediction is completed upon setting 4 equal to the material value 4.. In
this way the failure load P, required to cause unstable crack growth is determined to be

E%.b alb 172 .
N E D (plane strain). 47
1 2

Figure 10 presents the dependence of the normalized force P defined by
— EZ. b
P=P, / \/ 1—_°v5 (48)

on the parameter x for several values of a/b.
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hY!

Fig. 10. Dimensionless strength of joint as a function of «.

We now turn to the discussion of the use of Fig. 10. Observe first that the stress field
does not depend upon the load P in a linear manner. Accordingly the strength analysis is
not linear. For a given geometry and material (a/b, E, %, fixed) the strength depends in a
complicated way upon these parameters owing to the joint rotation and the parameter k.

To see this, we assume that E, a/b and %, are known and attempt to find P,. To do so,
we must know x which in turn depends upon P,. Thus one must first estimate x and then
obtain a first estimate for P, (say (P,),) from Fig. 10. The value of x can now be recomputed
and a new value (P_), determined from the figure. This process is repeated until (P,), =
(P.),+1 = P_, which should not take more than a few iterations.

The dependence of the joint strength upon the geometry should be discussed in a little
more detail. Observe from Fig. 10 that for a fixed adherend thickness 25 the dependence
of P upon the bond length 2a is weak. The reason for this is that the bulk of the force trans-
fer across the bond line occurs near the crack tips (see Figs. 6, 7) and hence increasing the
bond line length does not significantly alter the stress field near these points.

On the other hand the adherend thickness 2b plays a more important role. For example,
in the case k¥ =0, the normalized strength P is approximately 1.1 for afb € [4, 10]. From

equation (48) it is seen that the strength P, is approximately proportional to \/b. This
suggests that a more efficient way to improve the strength of the joint is to increase the
thickness of the adherends in the vicinity of the ends of the bond line.

In retrospect, this is to be expected upon recognition of the fact that, for a/b > 4, the
force transfer across the bond line occurs primarily at the current ends of the bond. Only
changes in the geometry near those points, i.e. changes in the adherend thickness 2b, can
affect this force transfer. Since b = 0 implies zero strength, increasing b must lead to an
improvement of the strength characteristics of the adhesive joint. Of course, these comments
only apply to the case where cracks have issued from the initial ends of the bond line and
for those combinations of adhesives and adherends for which brittle fracture mechanics is
applicable. In the event the adhesive material exhibits yielding the above model is not
applicable and an alternate approach is necessary[9].

It is clear that the model of an adhesive joint presented here can be improved. For exam-
ple, the effects of the adherend geometry at the initial ends of the bond line are of key
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importance and should be included in any strength analysis of an uncracked connection.
Nevertheless it is felt the results presented here are useful. The effect of the rotation of the
joint with the resulting interaction between 4, and A, has been demonstrated. At the same
time it was possible to complete a simple strength analysis (within the scope of brittle
fracture mechanics) and show the role of the geometric parameters upon the load carrying
capacity of the adhesive lap connection.
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